Convergence theorem of Pettis integrable multivalued pramart
نویسندگان
چکیده
Purpose In this work, the authors are interested in notion of vector valued and set Pettis integrable pramarts. The pramart is more general than that martingale. Every martingale a pramart, but converse not generally true. Design/methodology/approach present several properties convergence theorems for pramarts with convex weakly compact values separable Banach space. Findings existence conditional expectation mutifunctions indexed by bounded stopping times provided. prove almost sure Mosco linear topologies (cwk(E)) family subsets Originality/value purpose paper to new various results
منابع مشابه
Convergence Theorems for Set-valued Denjoy-pettis Integrable Mappings
In this paper, we introduce the Denjoy-Pettis integral of set-valued mappings and investigate some properties of the set-valued Denjoy-Pettis integral. Finally we obtain the Dominated Convergence Theorem and Monotone Convergence Theorem for set-valued DenjoyPettis integrable mappings.
متن کاملConvergence of Banach valued stochastic processes of Pettis and McShane integrable functions
It is shown that if (Xn)n is a Bochner integrable stochastic process taking values in a Banach lattice E, the convergence of f(Xn) to f(X) where f is in a total subset of E∗ implies the a.s. convergence. For any Banach space E-valued stochastic process of Pettis integrable strongly measurable functions (Xn)n, the convergence of f(Xn) to f(X) for each f in a total subset of E∗ implies the conver...
متن کاملA bilinear version of Orlicz-Pettis theorem
Given three Banach spaces X, Y and Z and a bounded bilinear map B : X×Y → Z, a sequence x = (xn)n ⊆ X is called B-absolutely summable if ∑∞ n=1 ‖B(xn, y)‖Z < ∞ for any y ∈ Y . Connections of this space with `weak(X) are presented. A sequence x = (xn)n ⊆ X is called B-unconditionally summable if ∑∞ n=1 |〈B(xn, y), z∗〉| < ∞ Preprint submitted to Elsevier 21 December 2007 for any y ∈ Y and z∗ ∈ Z∗...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملConvergence of approximating fixed points sets for multivalued nonexpansive mappings
Let K be a closed convex subset of a Hilbert space H and T : K ⊸ K a nonexpansive multivalued map with a unique fixed point z such that {z} = T (z). It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to z.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arab Journal of Mathematical Sciences
سال: 2021
ISSN: ['1319-5166', '2588-9214']
DOI: https://doi.org/10.1108/ajms-07-2021-0173